報(bào)告題目: Ancient solutions to mean curvature flow of isoparametricsubmanifolds
報(bào)告人:劉小博教授,北京國際數(shù)學(xué)中心副主任,博士生導(dǎo)師
摘要:Ancient solutions are important in studying singularities of mean curvature flows (MCF). So far most rigidity results about ancient solutions are modeled on shrinking spheres or spherical caps. In this talk, I will describe the behavior of MCF for a class of submanifolds, called isoparametricsubmanifolds, which have more complicated topological type. We can show that all such solutions are in fact ancient solutions, i.e. they exist for all time which goes to negative infinity. This motivated us to propose conjectures about rigidity of ancient MCF for hypersurfaces in spheres. This talk is based on a joint work with Chuu-LianTerng.
時(shí)間:2020年9月29日上午十點(diǎn)到十一點(diǎn)半
地點(diǎn):理化樓401會(huì)議室
歡迎青年教師和研究生、博士生參加!
劉小博,北京大學(xué)講席教授,北京國際數(shù)學(xué)研究中心副主任,北京大學(xué)數(shù)學(xué)研究所副所長,主要研究方向?yàn)槲⒎謳缀巍?shù)學(xué)物理,在Annals of Math, American Journal of Math等國際著名期刊上發(fā)表多篇高質(zhì)量論文,2006年受邀在西班牙馬德里召開的世界數(shù)學(xué)家大會(huì)上做特邀報(bào)告,2010年開始在北京大學(xué)工作。他回國后的主要研究領(lǐng)域集中在Gromov-Witten不變量普適方程和Virasoro猜想,取得了重要進(jìn)展。
關(guān)注微信
管理登錄