e1ewq.cn-亚洲午夜精品久久久久久久久,国产乱淫av一区二区三区,日本欧美一区二区三区乱码,激情六月婷婷久久

馬萬彪

教授

教授
應(yīng)用數(shù)學(xué)系
wanbiao_ma@ustb.edu.cn

  • 職 務(wù):博士生導(dǎo)師
  • 所在梯隊:泛函微分方程與生物動力系統(tǒng)梯隊
  • 本科生課程:數(shù)學(xué)分析、常微分方程、高等數(shù)學(xué)、線性代數(shù)、新生導(dǎo)論課
  • 研究生課程:微分方程穩(wěn)定性理論及其應(yīng)用(碩)、生物動力系統(tǒng)(博)、近世代數(shù)(碩)、現(xiàn)代數(shù)學(xué)(博)
  • 研究領(lǐng)域:(1) 泛函微分方程與差分系統(tǒng)的穩(wěn)定性理論;(2) 種群生態(tài)學(xué)、流行病學(xué)、細胞生物學(xué)、病毒與免疫學(xué)、人工神經(jīng)網(wǎng)絡(luò)等領(lǐng)域相關(guān)實際問題的動力學(xué)建模及理論與數(shù)值分析

教育經(jīng)歷

1983 內(nèi)蒙古師范大學(xué)數(shù)學(xué)系獲學(xué)士學(xué)位
1986 河北師范大學(xué)/內(nèi)蒙古師范大學(xué)數(shù)學(xué)系獲碩士學(xué)位
1997 日本國立靜岡大學(xué)大學(xué)院獲博士學(xué)位

工作經(jīng)歷

1986-1993 內(nèi)蒙古師范大學(xué)數(shù)學(xué)系任助教,講師,副教授
1993-1994 日本國立京都大學(xué)訪問學(xué)者
1998-2001 日本大阪府立大學(xué),靜岡大學(xué)任共同研究員,助手,副教授
2001-2003 永利集團3044am官方入口數(shù)力系任副教授
2003-現(xiàn)在 永利集團3044am官方入口數(shù)力系,應(yīng)用數(shù)學(xué)系任教授(2011.7-2016.2:應(yīng)用數(shù)學(xué)系主任)
社會兼職:
中國數(shù)學(xué)會生物數(shù)學(xué)專業(yè)委員會 副理事長兼任秘書長
生物數(shù)學(xué)學(xué)報(科學(xué)出版社出版)常務(wù)編委
Int.J.Biomath.(World Scientific,SCIE) 編委
Abstract Appl. Anal.(India, SCIE) 編委
美國[Math. Rev.]評論員

科研業(yè)績

論文論著:
在[科學(xué)通報]、[數(shù)學(xué)學(xué)報]、[數(shù)學(xué)年刊]、[數(shù)學(xué)物理學(xué)報]、[系統(tǒng)科學(xué)與數(shù)學(xué)]、[應(yīng)用數(shù)學(xué)學(xué)報]、[SIAM J. Appl. Math.]、[Nonl. Anal. TMA]、[Nonl. Anal. RWA]、[J. Math. Anal. Appl.]、[J. Optim. Theory Appl.]、[Tohoku Math. J.]、[Bull. Math. Biosci.]、[Math. Biosci. Eng.]、[Discrete Contin. Dyn. Syst.-B]、[Appl. Math. Letters]、[Appl. Math. Modelling]、[J. Comput. Appl. Math.]、[Appl. Math. Comput.]、[Rocky Mountain J. Math.]、[J. Biol. Syst.]、[Int. J. Biomath.]、[J. Math. Chem.]、[Dyn. Contin. Discrete Impul. Syst.]、[Math. Methods Appl. Sci.]、[Japan J. Indust. Appl. Math.]、[Math. Compt. Simul.]、[Elect. J. Differ. Equations]、[J. Appl. Math.]、[Comput. Math. Methods Medicine]、[J. Natl. Sci. Found. Sri Lanka]、[Int. J. Wavelets Multiresolut. Inf. Process.]、[Int. J. Control, Auto., Syst.]、[Chaos Solitons and Fractals.]、[Neurocomputing]、[Int. J. Bifurcat. Chaos]等學(xué)術(shù)雜志合作發(fā)表論文130余篇, 其中SCI檢索60余篇, 總被引700余次, 3篇論文入選ESI高被引論文. 聯(lián)合主編國際會議論文集2部, 聯(lián)合翻譯譯著1本.
主要論文:
一、部分中文論文
[1] 馬萬彪, 一類非線性系統(tǒng)的穩(wěn)定性, 科學(xué)通報, 31(1986), 1036.
[2] 馬萬彪, 超越函數(shù)的零點全分布在復(fù)數(shù)左半平面的代數(shù)判定準(zhǔn)則, 科學(xué)通報, 31(1986),  558;  或 Chinese Science  Bulletin, 31(1986), 1508. 
[3] 馬萬彪, 一類大系統(tǒng)的穩(wěn)定性, Chinese Science Bulletin, 32(1987), 136-137.
[4] 馬萬彪, 具有時滯的非線性控制系統(tǒng)的全局穩(wěn)定性和全局指數(shù)穩(wěn)定性, 數(shù)學(xué)學(xué)報, 31(1988), 88-94.
[5] 馬萬彪, 具有時滯的線性差分系統(tǒng)的全局穩(wěn)定性, Chinese J. Contemp. Math., B(1988), 185 -191; 或 數(shù)學(xué)年刊, 9A(1988), 224-228.
[6] 馬萬彪, 用向量V函數(shù)法研究線性時滯微分大系統(tǒng)的穩(wěn)定性, 應(yīng)用數(shù)學(xué)學(xué)報, 12(1989), 24-29.
[7] 斯力更, 馬萬彪, 中立型線性自治系統(tǒng)漸近穩(wěn)定的代數(shù)判定準(zhǔn)則, Chinese Science Bulletin, 33(1988), 1059-1061; 或 科學(xué)通報, 32(1987), 1208-1210.
[8] 斯力更, 馬萬彪, 反向時滯微分不等式及應(yīng)用, 科學(xué)通報, 33(1988), 1130-1133.
[9] 斯力更, 馬萬彪, 一類時滯積分微分不等式, Chinese Science Bulletin, 35(1990), 342- 344;  或 科學(xué)通報, 34(1989), 394-395.
[10] 斯力更, 馬萬彪, 超中立型泛涵微分方程的穩(wěn)定性及應(yīng)用, 應(yīng)用數(shù)學(xué)學(xué)報, 13(1990), 265 - 280.
[11] 馬萬彪, 具有無界時滯的中立型微分大系統(tǒng)的不穩(wěn)定性, 數(shù)學(xué)雜志, 13(1993), 525-533.
[12] 馬萬彪, 中立型積分微分方程的穩(wěn)定性, 數(shù)學(xué)年刊, 15A(1994), 74-81.
[13] 馬萬彪, 非線性離散不等式及其應(yīng)用, 應(yīng)用數(shù)學(xué)學(xué)報, 17(1994), 613-620.
[14] 斯力更, 馬萬彪, 非線性無窮時滯微分大系統(tǒng)的穩(wěn)定性, 數(shù)學(xué)學(xué)報,38(1995), 412-417.
[15] 付桂芳, 馬萬彪, 由微分方程所描述的微生物連續(xù)培養(yǎng)動力系統(tǒng)-(I), 微生物學(xué)通報, 31(2004), 136-139.
[16] 付桂芳, 馬萬彪, 由微分方程所描述的微生物連續(xù)培養(yǎng)動力系統(tǒng)-(II), 微生物學(xué)通報, 31(2004), 128-131.
[17] 靳 欣, 馬萬彪, 胸腺細胞發(fā)育的非線性動力系統(tǒng)模型的定性分析, 數(shù)學(xué)的實踐與認識, 36(2006). 99-109.
[18] 馬萬彪, 張尚國, 具有時滯的Hopfield神經(jīng)網(wǎng)絡(luò)系統(tǒng)全局穩(wěn)定的充要條件,生物數(shù)學(xué)前沿,生物數(shù)學(xué)叢書,陸征一、王穩(wěn)地主編,81-90,科學(xué)出版社,北京, 2008
[19] 董慶來, 馬萬彪, 具有時滯和可變營養(yǎng)消耗率的比率型Chemostat模型的穩(wěn)定性分析
系統(tǒng)科學(xué)與數(shù)學(xué), 29(2) (2009), 228–241.
[20] 侯博陽, 馬萬彪, 一類具有Beddington-DeAngelis型功能反應(yīng)函數(shù)的HIV病毒動力學(xué)系統(tǒng)模型的穩(wěn)定性, 數(shù)學(xué)的實踐與認識, 39(12)(2009), 71-79.
[21] 董慶來, 馬萬彪, 具有Crowley-Martin型功能反映函數(shù)恒化器系統(tǒng)的漸近形態(tài),系統(tǒng)科學(xué)與數(shù)學(xué), 38(2013), 922-929.
[22] 閆海, 王華生, 劉曉璐, 尹春華,許倩倩, 呂樂, 馬萬彪, 微囊藻毒素微生物降解途徑與分子機制研究進展, 環(huán)境科學(xué), 35(2014), No.3, 1205-1214.
[23] 邰曉東, 馬萬彪, 郭松柏, 閆海, 尹春華, 微生物絮凝的時滯動力學(xué)建模與理論分析, 數(shù)學(xué)的實踐與認識, 45(2015), No.13, 198-209.
二、部分英文論文(2000 - )
[1] Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with varying population size and finite incubation times, Nonl. Anal. TMA, 42 (2000), 931-947. 
[2] W. Ma, T. Hara and Y. Takeuchi, Stability of a 2-dimensional neural network with time delays, J. Biol. Syst., 8(2000), 177-193. 
[3] E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic models with distributed time delay, Nonl. Anal. TMA, 47(2001), 4107-4115.
[4] Y. Saito, W. Ma and T. Hara, Necessary and sufficient conditions for permanence of a Lotka - Volterra discrete systems with delays, J. Math. Anal. Appl., 256(2001), 162-174.
[5] Y. Saito, T. Hara and W. Ma, Harmless delays for permanence and impersistence of a Lotka - Volterra discrete predator-prey system, Nonl. Anal. TMA, 50(2002), 705-715.
[6] W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54(2002), 581-591.
[7] T. Amemiya and W. Ma, Global asymptotic stability of nonlinear delayed systems of neutral type,  Nonl. Anal. TMA, 54(2003), 83-91.
[8] W. Ma and Y. Takeuchi, Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate, Discrete Contin. Dyn. Syst.-B, 4(2004), 671-678.
[9] M. Yamaguchi, Y. Takeuchi and W. Ma, Population dynamics of sea bass and young sea bass, Discrete Contin. Dyn. Syst.-B, 4(2004), 833-840.
[10] W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Letters, 17(2004),1141-1145.
[11] G. Fu, W. Ma and S. Ruan, Qualitative analysis of a Chemostat model with inhibitory exponential substrate uptake, Chaos, Solitons and Fractals., 23(2005), 873-886.
[12] M. Song, W. Ma, and Y. Takeuchi, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay, Dyn. Contin. Discrete Impul. Syst., 13 (2006), 199-208.
[13] H. Shi and W. Ma, An improved model of T cell development in the thymus and its stability analysis , Math. Biosci. Eng., 3(2006), 237-248.
[14] G. Fu and W. Ma, Hopf bifurcations of a variable yield chemostat model with inhibitory exponential substrate uptake, Chaos, Solitons and Fractals, 30 (2006), 845–850.
[15] Y. Takeuchi and W. Ma, Delayed SIR Epidemic Models for Vector Diseases, Mathematics for Life Science and Medicine, Springer, 2007, 51-65.
[16] Dan Li and W. Ma, Asymptotic Properties of a HIV-1 Infection Model with Time Delay, J. Math. Anal. Appl., 335 (2007), 683–691.  ESI高被引論文
[17] M. Song, W. Ma and Y. Takeuchi, Permanence of a Delayed SIR Epidemic Model with Density Dependent Birth Rate, J. Compt. Appl. Math., 201(2007), 389-394.
[18] Y. Yamaguchi, Y. Takeuchi and W. Ma, Dynamical Properties of a Stage Structure Three- species Model with Intra-guild Predation, J. Compt. Appl. Math., 201(2007), 327-338.
[19] S. Zhang and W. Ma, Global stability of a Hopfield neural network with multiple time delays,
J. Biomath., 23(2008), 1-10.
[20] S. Zhang, W. Ma and Y. Kuang, Necessary and sufficient conditions for global attractivity of Hopfield type neural networks with time delays, Rocky Mountain J. Math., 38(2008), 1829-1840 
[21] Z. Hu, Y. Yu and W. Ma, The analysis of two epidemic models with constant immigration and quarantine, Rocky Mountain J. Math., 38(2008), 1421-1436 
[22] W. Ma, Y. Saito, Y. Takeuchi, M-matrix structure and harmless delays in a Hopfield-type neural network, Appl. Math. Letters, 22 (2009), 1066-1070. 
[23] Z. Hu, X. Chen, W. Ma, Analysis of an SIS Epidemic Model with Temporary Immunity and Nonlinear Incidence Rate, Chinese J. Eng. Math. , 26(3)(2009), 407-415.
[24] H. Shi, W. Ma, Z. Duan, Global asymptotic stability of a nonlinear time-delayed system of T cells in the thymus, Nonl. Anal. TMA, 71 (2009), 2699-2707.
[25] G. Huang, W. Ma, Y. Takeuchi, Global properties for virus dynamics model with Beddington - DeAngelis functional response, Appl. Math. Letters, 22 (2009), 1690-1693.
[26] Z. Hu, X. Liu, H. Wang, W. Ma, Analysis of the dynamics of a delayed HIV pathogenesis model, J. Compt. Appl. Math., 234(2010), 461-476. 
[27] Z. Hu, G. Gao and W. Ma, Dynamics of athree-species ratio-dependent diffusive model, Nonl. Anal. RWA, 11(2010), 2106-2114. 
[28] G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72(2010), 1192-1207.  ESI高被引論文
[29] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70(2010), 2693–2708.  ESI高被引論文
[30] G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington – DeAngelis functional response, Appl. Math. Letters, 24 (2011), 1199-1203. 
[31] Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate, Discrete Contin. Dyn. Syst.-B, 15( 2011), 93–112. 
[32] Y. Zhang, W. Ma, H. Yan and Y. Takeuchi, A dynamic model describing heterotrophic culture of chlorella and its stability analysis, Math. Biosci. Eng., 8( 2011), 1117–1133.
[33] X. Liu, H. Wang, Z. Hu and W. Ma, Global stability of an HIV pathogenesis model with cure rate, Nonl. Anal. RWA, 12 (2011), 2947–2961. 
[34] L. Chen and W. Ma, A nonlinear delay model describing the growth of tumor cells under immune surveillance against cancer and its stability analysis, Int. J. Biomath., 5(2012), 1260017 (13 pages).
[35] Y. Liu, W. Ma and Magdi S. Mahmoud, New results for global exponential stability of neural networks with varying delays, Neurocomputing, 97(2012), 357-363.
[36] Y. Dong and W. Ma, Global properties for a class of latent HIV infection dynamics model with CTL immune response, Int. J. Wavelets Multiresolut. Inf. Process., 10 (2012), 1250045(19 pages).
[37] Z. Hu, W. M and S. Ruan, Analysis of SIR epidemic models with nonlinear incidence rate and treatment, Math. Biosci., 238 (2012), 12–20.
[38] Q. Dong and W. Ma, Qualitative analysis of the Chemostat model with variable yield and a time delay, J. Math. Chem., 51(2013), 1274–1292.
[39] Q. Dong, W. Ma and M. Sun, The asymptotic behavior of a Chemostat model with Crowley – Martin type functional response and time delays, J. Math. Chem., 51 (2013), 1231–1248.
[40] S. Zhou, Z. Hu, W. Ma and F. Liao, Dynamics Analysis of an HIV Infection Model including Infected Cells in an Eclipse Stage, J. Appl. Math., Volume 2013, Article ID 419593, 12 pages.
[41] T. Wang, Z. Hu, F. Liao and W. Ma, Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Compt. Simul., 89 (2013), 13–22.
[42] D. LiW. Ma and Z. Jiang, An epidemic model for Tick-Borne disease with two delays, J. Appl. Math., Volume 2013, Article ID 419593, 12 pages.
[43] Z. Hu, J. Zhang, H. Wang, W. Ma and F. Liao, Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Modelling, 38 (2014), 524–534.
[44] S. Guo and W. Ma, Complete characterizations of the gamma function, Appl. Math. Comput., 244 (2014), 912–916.
[45] Z. Hu, W. Pang, F. Liao and W. Ma, Analysis of a CD4+ T cell viral infection model with a class of saturated infection rate, Discrete Contin. Dyn. Syst.-B, 19(2014), 735-745.
[46] S. Guo, W. Ma and B. G. Sampath Aruna Pradeep, Necessary and sufficient conditions for oscillation of neutral delay differential equations, Elect. J. Differ. Equations, 2014 (2014), No. 138, 1-12.
[47] Q. Dong and W. Ma, Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake and a time delay, Int. J. Biomath., 7(2014), 1450045 (16 pages).
[48] C. Fu and W. Ma, Partial stability of some guidance dynamic systems with delayed line-of-sight angular rate, Int. J. Control, Auto., Syst., 12(2014), 1234-1244.
[49] Z. Jiang, W. Ma and D. Li, Dynamical behavior of a delay differential equation system on toxin producing phytoplankton and zooplankton interaction, Japan J. Indust. Appl. Math., 31( 2014), 583-609.
[50] B. G. Sampath Aruna Pradeep and W. Ma, Stability properties of a delayed HIV dynamics model with Beddington - Deangelis functional response and absorption effect, Dyn. Contin. Discrete Impul. Syst., Series A: Math. Anal., 21 (2014), 421-434.
[51] Z. Jiang and W. Ma, Permanence of a delayed SIR epidemic model with general nonlinear incidence rate, Math. Methods Appl. Sci., (38)2015, 505–516.
[52] J. Dong and W. Ma, Sufficient conditions for global attractivity of a class of neutral Hopfield-type neural networks, Neurocomputing, 153(2015), 89-95.
[53] B. G. Sampath Aruna Pradeep and W. Ma, Global stability of a delayed Mosquito- transmitted disease model with stage structure, Elect. J. Differ. Equations, 2015 (2015), No. 10, 1-19.
[54] Y. Liu, W. Ma, Magdi S. Mahmoud and S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Modelling, 39(2015), 3164-3174.
[55] T. Zhang, W. Ma, X. Meng and T. Zhang, Periodic solution of a prey–predator model with nonlinear state feedback control, Appl. Math. Comput., 266 (2015), 95–107.
[56] B. G. Sampath Aruna Pradeep and W. Ma, Global stability analysis for vector transmission disease dynamic model with non-linear incidence and two time delays. J. Interdisciplinary Math. 18 (2015), No. 4, 395–415.
[57] Z. Jiang and W. Ma, Delayed feedback control and bifurcation analysis in a chaotic Chemostat system, Int. J. Bifurcat. Chaos, 25(2015), No.6, 1550087 (13 pages).
[58] F. Li, W. Ma, Z. Jiang and D. Li,Stability and Hopf bifurcation in a delayed HIV infection model with general incidence rate and immune impairment,Comput. Math. Methods Medicine,2105(2015), ID 206205, 14 pages.
[59] T. Zhang, W. Ma and X. Meng, Dynamical analysis of a continuous-culture and harvest chemostat model with impulsive effect, J. Biol. Syst., 23 (2015), 555–575.
[60] B. G. Sampath Aruna Pradeep, W. Ma and S. Guo, Stability properties of a delayed HIV model with nonlinear functional response and absorption effect, J. Natl. Sci. Found. Sri Lanka, 43(2015), No.3, 235-245.
[61] Z. Hu, H. Wang, F. Liao and W. Ma, Stability analysis of a computer virus model in latent period, Chaos Solitons and Fractals, 75(2015), 20-28.
出版譯著:
時滯微分方程: 泛函微分方程引論(日), 內(nèi)藤敏機, 原惟行, 日野義之, 宮崎倫子著, 馬萬彪,陸征一 譯, 科學(xué)出版社, 北京, 2013.
科研業(yè)績:
1. 生態(tài)動力系統(tǒng)的定性分析, 教育部留學(xué)回國基金, 2001-2003, 主持
2. 依賴于媒介的傳染病時滯微分系統(tǒng)與細胞免疫時滯微分系統(tǒng)的穩(wěn)定性研究, 國家自然學(xué)基金 (面上項目), 2007-2009, 主持
3. 官廳水庫上游媯水湖防止富營養(yǎng)化和藍藻水華發(fā)展的復(fù)合生態(tài)工程治理研究, 北京市教委-永利集團3044am官方入口共建項目, 2007-2009, 參加
4. 小球藻的異養(yǎng)培養(yǎng)及在生物學(xué)降解水體中氮(N)-磷(P)-微囊藻(MCs)研究中的一些動力學(xué)問題 (面上項目), 國家自然科學(xué)基金, 2011-2013, 主持
5. 光合細菌絮凝與收集相關(guān)問題的動力學(xué)建模與理論和數(shù)值研究, 國家自然科學(xué)基金 (面上項目), 2015 -2018, 主持

獲得獎勵

獲得獎勵/專利:中立型時滯微分方程解的性態(tài)和穩(wěn)定性的研究, 內(nèi)蒙古自治區(qū)科學(xué)技術(shù)進步一等獎, 1992, 獲獎人:斯力更, 馬萬彪

關(guān)注微信

管理登錄

永利集團·(304am-VIP認證)官方網(wǎng)站-Green app platform?版權(quán)所有 北京市海淀區(qū)學(xué)院路30號 100083 京公網(wǎng)安備:110402430062 | 京ICP備:13030111
最新不卡av在线| 国产在线播放一区二区三区| 欧美女孩性生活视频| 97成人超碰视| 91亚洲午夜精品久久久久久| 成人精品一区二区三区中文字幕| 国产在线精品一区二区不卡了| 麻豆成人av在线| 久久99国产精品免费| 久久丁香综合五月国产三级网站| 裸体歌舞表演一区二区| 久久99国产精品麻豆| 国产精品自产自拍| 成人精品视频一区二区三区尤物| 99视频有精品| 色综合天天狠狠| 欧美午夜精品一区| 日韩视频123| 国产欧美一区二区三区网站| 国产精品久久久久一区| 亚洲精品国产一区二区精华液 | 亚洲国产一二三| 视频在线观看一区二区三区| 久久99久久久久| 成人av免费在线| 在线区一区二视频| 日韩天堂在线观看| 国产精品网站导航| 亚洲成av人片在线| 国产精品1024久久| 欧美日韩国产综合视频在线观看 | 国产精品中文字幕一区二区三区| 成人精品视频一区二区三区尤物| 在线免费观看成人短视频| 欧美一区二视频| 国产精品国产a级| 日本不卡一区二区三区高清视频| 成人午夜视频在线观看| 欧美日韩视频不卡| 国产精品网站导航| 免费日本视频一区| 91久久国产最好的精华液| 欧美mv日韩mv亚洲| 亚洲国产精品久久不卡毛片| 国产高清精品网站| 91精品国产欧美一区二区成人| 国产欧美日韩精品一区| 日韩二区在线观看| 91久久国产综合久久| 国产欧美日韩精品a在线观看| 三级欧美在线一区| 色综合久久中文综合久久牛| 国产网站一区二区三区| 青青草国产精品97视觉盛宴| 色天使色偷偷av一区二区| 国产亚洲1区2区3区| 青椒成人免费视频| 欧美天天综合网| 亚洲人成网站在线| 成人午夜免费av| 久久新电视剧免费观看| 日本视频在线一区| 欧美日韩国产高清一区二区三区| 亚洲色图在线视频| 成人毛片在线观看| 国产欧美精品国产国产专区| 韩国欧美国产1区| 欧美成人a∨高清免费观看| 天堂av在线一区| 欧美日韩国产精选| 亚洲一区二区3| 欧美无乱码久久久免费午夜一区| 亚洲视频一区在线| 99久久精品免费看国产免费软件| 日本一区二区综合亚洲| 国产精品一区二区在线观看不卡| 精品国产乱码久久久久久夜甘婷婷| 日韩激情中文字幕| 91精品午夜视频| 天天av天天翘天天综合网 | 亚洲精品一区在线观看| 青娱乐精品视频| 欧美一区二区三区视频免费播放| 亚洲大尺度视频在线观看| 色妹子一区二区| 亚洲精品免费在线| 在线观看一区二区视频| 亚洲第四色夜色| 91精品啪在线观看国产60岁| 日本不卡一二三| 精品国产成人系列| 国产盗摄视频一区二区三区| 亚洲国产激情av| 99re这里都是精品| 亚洲综合在线电影| 91麻豆精品国产无毒不卡在线观看| 亚洲大片精品永久免费| 欧美日韩高清一区二区| 午夜精彩视频在线观看不卡| 91精品欧美一区二区三区综合在 | 亚洲国产综合在线| 91精品综合久久久久久| 蜜桃一区二区三区四区| 精品卡一卡二卡三卡四在线| 国产在线观看免费一区| 中文字幕欧美一| 欧美人体做爰大胆视频| 美日韩黄色大片| 国产精品网站在线观看| 欧美影院一区二区| 久久不见久久见免费视频7| 国产日韩三级在线| 欧美伊人久久久久久久久影院| 热久久国产精品| 国产精品女同一区二区三区| 欧美日韩在线播| 国产伦精品一区二区三区免费迷| 1000精品久久久久久久久| 51精品久久久久久久蜜臀| 国产成人日日夜夜| 亚洲综合在线视频| 国产亚洲成aⅴ人片在线观看| 欧洲av一区二区嗯嗯嗯啊| 国内精品伊人久久久久av影院 | 日韩成人免费电影| 中文字幕第一区综合| 欧美三级三级三级| 国产精一区二区三区| 亚洲理论在线观看| 26uuu精品一区二区在线观看| 色综合天天综合网天天狠天天 | 蜜桃传媒麻豆第一区在线观看| 久久久午夜精品| 在线观看日韩电影| 国产精品一区不卡| 日韩国产欧美视频| 亚洲欧美日韩在线不卡| 久久综合九色综合97婷婷女人 | 亚洲同性同志一二三专区| 欧美成人一区二区| 色欧美片视频在线观看在线视频| 激情文学综合丁香| 亚洲国产精品综合小说图片区| 国产日韩欧美a| 欧美一区二区三区在线观看视频 | 日韩精品一区二区三区三区免费| 成人18视频在线播放| 国内成+人亚洲+欧美+综合在线| 一区二区日韩av| 亚洲天堂2016| 日本一区二区动态图| 精品国产污污免费网站入口| 欧美日韩亚洲综合一区| 91小宝寻花一区二区三区| 国产成人综合视频| 精品在线播放午夜| 人人爽香蕉精品| 日韩影院在线观看| 亚洲国产日韩一级| 亚洲一区在线视频| 一区二区三区在线观看视频| 自拍偷拍国产精品| 国产精品国产三级国产普通话99| 久久久www成人免费无遮挡大片| 日韩欧美在线网站| 日韩视频在线你懂得| 欧美人牲a欧美精品| 欧美精品v日韩精品v韩国精品v| 欧美视频一二三区| 欧美日免费三级在线| 欧美艳星brazzers| 欧美日韩视频在线第一区| 欧美日本国产一区| 日韩一区二区三区在线| 日韩欧美国产小视频| 亚洲精品一区二区三区在线观看| 欧美sm极限捆绑bd| 久久精品一级爱片| 欧美韩国一区二区| 国产精品国产三级国产| 亚洲天堂2014| 亚洲国产另类精品专区| 日本少妇一区二区| 国产一区二区三区综合| 粉嫩av一区二区三区粉嫩| av在线播放一区二区三区| 色综合久久久久网| 欧美区在线观看| 精品处破学生在线二十三| 国产三区在线成人av| 亚洲天堂精品在线观看| 亚洲高清视频在线| 捆绑调教美女网站视频一区| 国产精品资源在线看| 91蝌蚪porny| 欧美一级精品大片| 国产片一区二区| 亚洲国产日韩在线一区模特| 蜜桃视频第一区免费观看| 欧美亚洲另类激情小说|